Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

‘Sleeping With the Stars’ – The Design of a Personal Crew Quarter for the International Space Station

2001-07-09
2001-01-2169
As the International Space Station (ISS) takes shape, the prospect of living in space for prolonged periods becomes a reality for a greater number of individuals. Crewmembers aboard the ISS will live alongside each other for months, in confined spaces, under difficult conditions. Living in a hermetic environment, with other individuals from a variety of cultural backgrounds, will inevitably cause stresses. The living environment must meet a variety of needs in order to be conducive to the well being of the individual and the crew community. This Master’s design project addresses the design of a private, individual, crew quarter. The goal is to meet a crewmember’s functional requirements, as well as providing the means to achieve privacy and comfort while considering the qualitative aspects of the personal space.
Technical Paper

‘Skins’ by Design: Humans to Habitats

2003-07-07
2003-01-2655
Whether we live on land, underwater, or out there in space, what makes it possible is our ‘skin’. The one we were born with, the one we wear, the one we live in, and the one we travel in. The skin is a response to where we live: it protects as our first line of defense against a hostile environment; it regulates as part of our life-support system; and, it communicates as our interface to everything within and without. In the context of space architecture – we, our space suits, vehicles and habitats are all equipped with highly specialized ‘skins’ that pad us, protect us and become an integral part of the design expression. This paper approaches the subject from a holistic perspective considering ‘skins’ and their manifestation as structure, as vessel, as texture, and as membrane. The paper then goes on to showcase innovative use of materials in practice through two case studies: the ‘spacesuit’ and ‘inflatable habitats’.
Technical Paper

‘Almost’ Real-Time Diagnosis and Correction of Manufacturing Scrap Using an Expert System

1987-04-07
870905
This paper describes preliminary findings on an expert system that uses both operator and transducer inputs in ‘almost’ real-time to diagnose scrap type and recommend corrective action to reduce/eliminate further production of this scrap type. During the development of the expert system, equal consideration was given to hardware installation and debugging; system architecture, logic, and triggering; and knowledge acquisition. The system is applied to a specific manufacturing process; however, the ideas are applicable to a wide range of problems in the production environment.
Technical Paper

‘A Comparative Study of the Integrity of Joints Between Multilayer Fuel Line Constructions and Different Connector ‘Barb’ Designs

2000-03-06
2000-01-1098
With the advent of low evaporative emission requirements there has been the rapid adoption of multilayer extrusion technology into the production of Fuel and Vapour tubing used on Fuel systems on automobiles. Multilayer extrusion technology enables a manufacturer of Fuel and Vapour tubing to simultaneously co-extrude dissimilar thermoplastic materials in tubular form. This allows the manufacturer to combine expensive and brittle high performance evaporative emission ‘barrier’ polymers with lower cost engineering polymers. However, it is a well-known characteristic of these multilayer tube constructions that the joints between them and connector ‘barbs’ have lower joint integrity. Joint integrity is most often quantified by ‘Pull-off’ and leakage tests. Recent developments in LEV-II requirements for 2004 and beyond indicate that joint integrity will become a focus area for study and improvement.
Technical Paper

the use of Radioactive Tracer Techniques to determine the effect of operating variables on Eng ine Wear

1960-01-01
600035
RADIOTRACERS were used to study the wear effects of engine speed, load, jacket water temperature, fuel temperature, and chromium-plated rings in a medium-speed diesel engine. One distillate fuel and two residual fuels were tested. This paper describes the tests and their results. Some of the conclusions are: The brake thermal efficiency with high viscosity residual fuel was essentially equal to distillate diesel fuel over a wide range of loads, providing the residual fuel was heated to the proper temperature. Engine speed did not affect the wear rate of cast-iron rings when distillate fuel was used, while with residual fuel wear decreased with increased speed. With distillate fuel, engine load had essentially no effect on cast-iron ring wear. With residual fuel, decreasing engine load produced a marked increase in ring wear*
Technical Paper

the use of Bench Wear tests in Materials Development

1959-01-01
590065
TWO TYPES of bench wear tests employed by the General Motors Research Laboratories are described, and examples are given to illustrate the application of the tests to material development problems. It is shown that correlation of a bench test with service may be achieved even when the laboratory test conditions do not appear to duplicate service conditions exactly. It is postulated that this behaviour is related to the formation of certain types of surface films during the wearing process. Some preliminary results are given of a study of the influence of lubricant type and material composition on the formation of anti-wear films.
Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

the expanding Polymer Horizon

1960-01-01
600013
THE DEVELOPMENT of new polymers offering properties and new combinations of desirable characteristics, coupled with advances in manufacturing techniques, has expanded the plastics horizon. This paper describes some of these new materials and a few of their many possible applications in the automotive industry. The author emphasizes that greater use of plastics in the automotive field depends to a great degree on the imagination and ability applied in creating new products. Design features most overcome the fundamental limitations of the new materials. The basic weaknesses of plastics are listed. Production techniques will affect the future expansion of the industry. Three methods show particular promise: blow molding, fluidized polymer deposition, and potting compounds.*
Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

the development of Refractory Sheet Metal Structures

1960-01-01
600041
THIS PAPER REPORTS on the present state of the art in the utilization of refractory metals for air frame and powerplant sheet metal components. By far the most promising of these metals to date is molybdenum. The mechanical and physical properties of molybdenum are well-suited for high-temperature service. The combination of relatively high thermal conductivity, low thermal expansion coefficient, good specific heat, and a reasonably high emissivity of a coated surface make this material suitable for exterior surface application on severely aerodynamically heated components. However, in its usable alloyed forms, molybdenum tends to behave in a brittle manner at room temperature, suffering from a high brittle-to-ductile transition temperature. Other unacceptable properties are the presence of laminations in the material, 45-deg preferred angle cracking, and difficulty of controlling interstitial alloying elements. The authors discuss each of these and the progress made in overcoming them
Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

some recent experiments on the FRICTION, WEAR, AND DEFORMATION OF SOLIDS

1959-01-01
590228
EXPERIMENTS have been conducted at Cambridge University which probed the sliding friction and wear of nonmetals, and the deformation of solids at high rates of strain. The author was particularly interested in the deformation and damage of metals and nonmetals under high-speed liquid impact. The findings will contribute to the development of materials that can withstand the friction of high-speed space flight. The author discusses the sliding friction and wear of wood, diamond, glass, rubber, and metallic carbides. In the last part of the paper, he describes the high-speed problems arising when solids are deformed very rapidly.
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

recent developments make ENGINEERING SPECIFICATIONS more realistic

1959-01-01
590046
SPECIFICATIONS that are realistic for production and result in a product that functions properly can be set with a three-step method evolved from statistical control techniques. The tolerances thus established reduce production costs, as well as costs arising from faulty products, the author states. The author applies the method to a leakage problem encountered on mechanical-hydraulic units. Through the use of statistical control techniques, the cause of the leakage was discovered.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

1960-01-01
600045
STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
Technical Paper

pCBT: A New Material for High Performance Composites in Automotive Applications1

2004-10-26
2004-01-2698
Cyclic oligomers of butylene terephthalate (CBT™)† represent a new chemical route to semi-crystalline thermoplastic polybutylene terephthalate (PBT). The oligomers of interest melt completely at about 150°C to produce a low viscosity fluid that is ideal for wetting and dispersing fibrous fillers and reinforcements thereby enabling the development of composites that were previously not possible when working with high viscosity commercial PBT. Introduction of catalyst to undiluted molten cyclic oligomer leads to rapid ring opening polymerization and the formation of high molecular weight thermoplastic PBT without the generation of volatile organic compounds. The polymer resulting from this polymerization will be hereby referred to as pCBT. Treatment of cyclic oligomers in this fashion results in pCBT thermoplastic resin with a high melting point (230°C) and physical performance similar to that of other commercially available PBT resins.
Technical Paper

economics of Heavy-Duty Brake Design and Maintenance

1960-01-01
600040
THIS PAPER presents a review of the design and operational problems of heavy-duty truck brakes. One of the major development goals is brakes that require no attention between relinings (as are now available on passenger cars). The author discusses point by point the AMA-TTMA Brake Committee agreement relating to extended brake service life and periods between brake adjustments. Emphasis is placed upon maintenance programs which provide for frequent inspection of the vehicle. The margin of brake performance deterioration is narrow.*
Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Technical Paper

development of the SUPPRESSOR AND THRUST BRAKE FOR THE DC-8 AIRPLANE

1959-01-01
590061
THIS PAPER presents the development of the DC-8 suppressor and thrust brake unit from initial test work through the final design. The selection of the production unit was based on a wide background of test work using both model and full-scale facilities. On the basis of this work, the configuration selected for production consisted of a fixed, corrugated, suppressing nozzle with a retractable ejector. A target-type thrust brake, mounted in the ejector, was chosen for the thrust brake production unit. Approximately 12-db suppression and 44% reverse thrust are provided by the unit. The ejector is hydraulically operated and the thrust brake air actuated. Both actuation systems obtain power from the aircraft systems which provides for operation during engine-out conditions. Alternate methods of actuation are provided in case of a primary system failure.
Technical Paper

application of the Cumulative Fatigue Damage Theory to practical problems

1960-01-01
600032
THIS PAPER presents an analysis of the Corten-Dolan cumulative fatigue damage theory. This equation was used to predict total cycles to failure for random dynamic loading on chains operating over sprockets in the laboratory. This theory takes into account all peak stresses to which the part is subjected. And it assumes that the various stress ranges are not applied in any given sequence. The author also describes various other methods for predicting cycles to failure for steels subjected to varying load ranges.*
X